Can you hear the shape of a jet?

Rikab Gambhir With Akshunna S. Dogra ((), Demba Ba (), & Jesse Thaler ()

Rikab Gambhir

Fundamental Question: What shape is this?

Pictured: (Fake) event that you might have measured at the LHC

Red dots are detector hits on a patch of the LHC cylinder, weighted by energy

Goal: Construct an observable **(**) that generically answers this question!

Using the **SHAPER** framework

$$\mathcal{O}_{\mathcal{M}}(\boldsymbol{\mathcal{E}}) = \min_{\substack{\mathcal{E}_{\theta}' \in \mathcal{M}}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}_{\theta}')$$
$$\theta = \operatorname*{argmin}_{\substack{\mathcal{E}_{\theta}' \in \mathcal{M}}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}_{\theta}')$$

Circle with radius 0.767, center (0.50, 0.36) and a "circle-ness" value of 0.32.

Yes, you CAN hear the shape of a jet!

Rikab Gambhir

NSF AI Institute for Artificial Intelligence & Fundamental Interactions

Piecewise-Linear Manifold Approximation with K-Deep Simplices (KDS, <u>2012.02134</u>)

SHAPER: Learning the Shape of Collider Events

$$\mathcal{P}_{\mathcal{M}}(\mathcal{E}) = \min_{\mathcal{E}'_{\theta} \in \mathcal{M}} \text{EMD}(\mathcal{E}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\mathcal{E}'_{\theta} \in \mathcal{M}} \text{EMD}(\mathcal{E}, \mathcal{E}'_{\theta})$$

Framework for defining and calculating useful observables for collider physics!

Rikab Gambhir

O

Energy Flows

Robust Observables

[Enrico Bothmann et. al., 1905.09127; CMS, 1810.10069]

[Enrico Bothmann et. al., 1905.09127; CMS, 1810.10069]

Robust Observables

Perturbativity? Hadronization? Parton Shower Model?

Theory

Finite Calorimeter Resolution Effects? Different Resolution between Detectors?

[Enrico Bothmann et. al., 1905.09127; CMS, 1810.10069]

Robust Observables

Rikab Gambhir

The Energy Flow

The Infrared and Collinear (IRC) safe information about a state is contained within its **Energy Flow**:

Can be either **real** or **idealized**.

This plot is the energy flow for an event

Shapes and the Wasserstein Metric

Shapes and the Energy Flows

Translate our question about shapes into energy flows!

Shape Observables

Minimize over the manifold of parameterized energy flows to determine shape!

$$\mathcal{O}_{\mathcal{M}}(\mathcal{E}) = \min_{\substack{\mathcal{E}'_{\theta} \in \mathcal{M}}} \text{EMD}(\mathcal{E}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\substack{\mathcal{E}'_{\theta} \in \mathcal{M}}} \text{EMD}(\mathcal{E}, \mathcal{E}'_{\theta})$$

Learns the "shapiness" O and the optimal shape parameters θ

Observables ⇔ Manifold of Parameterized Flows correspondence!

[P. Komiske, E. Metodiev, J. Thaler, 1902.02346; see also T. Cai, J. Cheng, K. Craig, N. Craig, 2111.03670; see also C. Zhang, Y. Cai, G. Lin, C. Shen, 2003.06777; see also L. Hou, C. Yu, D. Samaras, 1611.05916; see also M. Arjovsky, S. Chintala, L. Bottou, 1701.07875]

The Wasserstein Metric

There is a natural metric on probability distributions, the Wasserstein Metric

$$\operatorname{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta}) = \sum_{i,j} f_{ij} \frac{|\hat{\boldsymbol{y}}_i - \hat{\boldsymbol{y}}'_j|}{R} + |\boldsymbol{E}_i - \boldsymbol{E}'_j|$$

where $\sum_j f_{ij} = \boldsymbol{E}_i, \sum_i f_{ij} = \boldsymbol{E}'_j, \sum_{i,j} f_{ij} = \min(\boldsymbol{E}_i, \boldsymbol{E}'_j)$

Also known as the Earth/Energy Mover's Distance (EMD) geometric structure on events!

EMD = Work done to move "dirt" optimally

Defining Shapes

Our parameterized circle written as an energy flow

*Uniform prior by choice for simplicity. In principle, we can pick any parameterized normalized distribution.

Observable ⇔ Manifolds

[P. Komiske, E. Metodiev, and J. Thaler, 2004.04159; J. Thaler, and K. Van Tilburg, 1011.2268; I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, 1004.2489.; S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, PRL 12 (1964) 57-61; C. Cesarotti, and J. Thaler, 2004.06125]

Many existing observables have this form!

- *N*-subjettines \Leftrightarrow Manifold of *N*-point events
- *N*-jettiness ⇔ Manifold of *N*-point events with floating energy
- Thrust ⇔ Manifold of back-to-back point events
- Event Isotropy \Leftrightarrow Uniform distribution
- ... and more!

All of the form "How much like [shape] does my event look like?"

We generalize this to build more observables!

The SHAPER Framework

SHAPER

Shape-Hunting Algorithm using Parameterized Energy Reconstruction

Framework for defining and building IRC-safe observables using parameterized objects

Easy to define new observables by specifying parameterization, or by combining shapes

Returns EMD distance and optimal shape parameters

 $\min_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\mathcal{E}, \mathcal{E}'_{\theta})$ Sampling Energy Flows Gradient Descent Linear Programming **Simplex Projections** Loss and Shape (\mathcal{O}, θ)

[J. Feydy, tel.archives-ouvertes.fr/tel-02945979; B. Charlier, J. Feydy, J. Alexis Glaunès F. D. Collin, G. Durif, JMLR:v22:20-275; J. Feydy, T. Séjourné, F. X. Vialard, S. Amari, A. Trouvé, G. Peyré, 1810.08278]

Estimating Wasserstein

Sinkhorn Divergence: A strictly convex approximation to EMD! Dual potential formalism^{*}:

$$\mathbb{E}\mathrm{MD}_{\epsilon}(\mathcal{E}, \mathcal{E}') = \max_{f, g: \mathcal{X} \to \mathbb{R}} \left[\sum_{i \in \mathcal{E}} z_i f(x_i) + \sum_{j \in \mathcal{E}'} z'_j g(y_j) - \epsilon \sum_{ij \in \mathcal{E}, \mathcal{E}'} z_i z'_j \left(e^{\frac{1}{\epsilon} (f(x_i) + g(y_j) - \theta_{ij})} - 1 \right) \right]$$
distance matrix

Can take gradients with respect to the entire event!

$$\nabla_{z_i} \text{EMD}_{\epsilon} = f(x_i)$$
$$\nabla_{x_i} \text{EMD}_{\epsilon} = z_i \nabla_{x_i} f(x_i)$$

Algorithm 3.4: Symmetric Sinkhorn algorithm, with debiasing **Parameters:** Cost function $\mathbf{C}: (x_i, y_i) \in \mathcal{X} \times \mathcal{X} \mapsto \mathbf{C}(x_i, y_i) \in \mathbb{R}$, Temperature $\varepsilon > 0$. **Input:** Positive measures $\alpha = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$ and $\beta = \sum_{i=1}^{M} \beta_i \delta_{y_i}$ with the same mass. 1: $f_i^{\beta \to \alpha}, g_j^{\alpha \to \beta}, f_i^{\alpha \leftrightarrow \alpha}, g_j^{\beta \leftrightarrow \beta} \leftarrow \mathbf{0}_{\mathbb{R}^N}, \mathbf{0}_{\mathbb{R}^M}, \mathbf{0}_{\mathbb{R}^N}, \mathbf{0}_{\mathbb{R}^M}$ ▷ Dual vectors. > The four lines below are executed simultaneously. 2: repeat 3: $f_i^{\beta \to \alpha} \leftarrow \frac{1}{2} f_i^{\beta \to \alpha} + \frac{1}{2} \min_{y \sim \beta, \varepsilon} \left[\mathbf{C}(x_i, y) - g^{\alpha \to \beta}(y) \right],$ $\triangleright \alpha \leftarrow \beta$ $g_i^{\alpha \to \beta} \leftarrow \frac{1}{2} g_i^{\alpha \to \beta} + \frac{1}{2} \min_{x \sim \alpha, \varepsilon} \left[\mathbf{C}(x, y_i) - f^{\beta \to \alpha}(x) \right],$ $\triangleright \beta \leftarrow \alpha$ $f_i^{\alpha \leftrightarrow \alpha} \leftarrow \frac{1}{2} f_i^{\alpha \leftrightarrow \alpha} + \frac{1}{2} \min_{x \sim \alpha, \varepsilon} \left[\mathbf{C}(x_i, x) - f^{\alpha \leftrightarrow \alpha}(x) \right],$ $\triangleright \alpha \leftarrow \alpha$ $g_i^{\beta \leftrightarrow \beta} \leftarrow \frac{1}{2} g_i^{\beta \leftrightarrow \beta} + \frac{1}{2} \min_{y \sim \beta, \varepsilon} \left[\mathbb{C}(y, y_i) - g^{\beta \leftrightarrow \beta}(y) \right].$ $\triangleright \beta \leftarrow \beta$ 4: until convergence up to a set tolerance. > Monitor the updates on the potentials. 5: return $f_i^{\beta \to \alpha} - f_i^{\alpha \leftrightarrow \alpha}, g_i^{\alpha \to \beta} - g_i^{\beta \leftrightarrow \beta}$ \triangleright Debiased dual potentials $F(x_i)$ and $G(y_i)$.

Implemented using the KerOps Python Package!

*Needs to be debiased, not shown here for simplicity

Fun Animations

Fun Animations Cont'd

N-Subjettiness

Easy to compute classic jet observables!

Rikab Gambhir

[see also L., B. Nachman, A. Schwartzman, C. Stansbury, 1509.02216; see also B. Nachman, P. Nef, A. Schwartzman, M. Swiatlowski, C. Wanotayaroj, 1407.2922; see also M. Cacciari, G. Salam, 0707.1378]

New IRC-Safe Observables

The **SHAPER** framework makes it easy to invent new jet observables!

- e.g. *N*-Ellipsiness+Pileup as a jet algorithm.
 - Learn jet centers
 - Dynamic jet radii (no *R* hyperparameter)
 - Dynamic eccentricities and angles
 - Dynamic jet energies
 - Uniform Pileup Subtraction
 - Learned parameters for discrimination

Can design custom specialized jet algorithms to learn jet substructure!

New IRC-Safe Observables

Light Quark Jet The **SHAPER** framework makes it easy to invent new jet observables! e.g. *N*-Ellipsiness+Pileup as a jet algorithm. Learn jet centers Dynamic jet radii (no *R* hyperparameter) 0.0 04 08 Maximum Eccentricity Dynamic eccentricities and angles Dynamic jet energies **Uniform Pileup Subtraction** Learned parameters for discrimination Can design custom specialized jet algorithms to learn jet substructure!

Top Quark Jet

Low Max Eccentricity (.001) High Max Eccentricity (.972)

Max Eccentricity

Observables on CMS OpenData

Outlook

SHAPER, a machine learning framework for calculating robust observables for collider physics based on IRC-safety and Wasserstein geometry!

Playground for defining and building custom observables and jet algorithms!

$$\mathcal{O}_{\mathcal{M}}(\boldsymbol{\mathcal{E}}) = \min_{\substack{\mathcal{E}'_{\theta} \in \mathcal{M}}} \text{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\substack{\mathcal{E}'_{\theta} \in \mathcal{M}}} \text{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$

Outlook

SHAPER, a machine learning framework for calculating robust observables for collider physics based on IRC-safety and Wasserstein geometry!

Playground for defining and building custom observables and jet algorithms!

$$\mathcal{O}_{\mathcal{M}}(\mathcal{E}) = \min_{\substack{\mathcal{E}'_{\theta} \in \mathcal{M}}} \text{EMD}(\mathcal{E}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\substack{\mathcal{E}'_{\theta} \in \mathcal{M}}} \text{EMD}(\mathcal{E}, \mathcal{E}'_{\theta})$$

Using **SHAPER**, you **CAN** hear the shape of a jet!

More questions? Email me at rikab@mit.edu

Appendices

Toy Analysis

Define the following two types of events:

- Type 1: Ring-Like
 - Pois(50) "signal" particles, uniformly making up 70%-90% of event energy
 - Arranged in a ring with radius $r \sim N(0.75, 0.25)$, width = 0.1
 - Pois(250) "background" particles making up remaining energy
- Type 2: Disc-Like
 - Pois(50) "signal" particles, uniformly making up 70%-90% of event energy
 - Arranged in a disc with radius *r* ~ *N*(0.50, 0.25)
 - Pois(250) "background" particles making up remaining energy

Observables

In analogy with *N-jettiness*, define the *A-shapeliness* of an event as the value of the loss when evaluated on the shape *A*.

For this toy analysis, define:

- Shape A₁: Filled-in triangle, parameterized by its vertices
- Shape A_2 : Boundary of a triangle, parameterized by its vertices ($\partial A1$)

Both shapes have R = 0.25

The ratio of the shapeliness values should be a proxy for if the event is ring-like or disc-like

Technical Aspects

- 125 sample points defining shapes
- Adam optimizer, lr = 0.05
- 125 epochs with *z0* frozen, then 125 epochs with *z0* unfrozen
 - Early stopping if loss has not improved after 10 epochs
- Triangles initialized at (-1, -1), (-1, 1), (1,1)

With these settings, each observable takes about 2-3 seconds per event.

Results

Rikab Gambhir

Results - High Background (40%-60%)

Rikab Gambhir

IRC Safety

Infrared Safety: An observable is unchanged under a soft emission

Collinear Safety: An observable is unchanged under a collinear splitting

Implementation

To practically determine this minimum ...

- 1. Initialize *A* by random sampling the energy flow
- 2. Freeze A. Calculate the Wasserstein Metric loss L, and the corresponding transport matrix f_{iv}
- 3. Freeze *f*. Calculate the gradients of *L* with respect to *A* [ignoring dependencies on *f*]
- 4. Gradient update A
- 5. Freeze f and A. Gradient update weights z by numerical derivative
- 6. Repeat 2-5 until convergence.